

Development of an aberration corrected PEEM at the ALS

Jun Feng

ESG, ALS

PEEM3 Project team

Modeling the resolution

- -Resolution evaluated by mapping secondary electron angle and energy distribution through fields
- -electron distribution from sample in (θ, φ, E)
 - -Distribution in $N(\theta) = \cos(\theta)$
 - -Uniform distribution in ϕ
 - -kinetic energy distribution $N(E)=E/(E+w_f)^4$
 - -->Weighted "macro-particle"
 - $N(\theta, \phi, E) = \cos(\theta)\sin(\theta)E/(E+wf)^4$
- -all order ray tracing technique used
- -Detailed model check with SMART, PEEM2, charge ring +DA map method
- -Modulation Transfer Function calculated by FFT method

Energy(ev)

Aberration existed in electron lens just like in light optics lens

Chromatic aberration

chromatic Gaussian image plane $E > E_n$ $E < E_n$

Spherical aberration

$$r = \sqrt{(C_s \sin^3 \alpha)^2 + (C_c \delta \sin \alpha)^2 + (0.61\lambda / \sin \alpha)^2}$$

These aberrations limit PEEM resolution

Electron mirror can compensate the aberration of electron lens

Spherical aberrations

Lens

Mirror

Chromatic aberrations

Model checking with other theory

$$r = \theta \Delta f + \theta^3 C_3 + \theta^5 C_5 - \kappa \theta C_c - \kappa \theta^3 C_{3c} + \kappa^2 \theta C_{cc}$$

Aberration coefficients comparison

	$\Delta \mathbf{f}$	Cc	C3	C5	C3c	Ccc
Smart	2.10-9	-9.8173m	-539,71m	-904640m	-3269.8m	-5.4317m
Our	1.03.10-6	-9.829m	-539.84 m	-913725 m	-3268.5m	-5.387m
Diff	~0	0.12%	0.02%	1%	0.04%	0.8%

Model check with experiment: PEEM2 Resolution

It begins with near unity modulation at low frequency and gradually becomes lower towards higher frequencies.

Contrast 1 means the image detail is perfectly maintained, while zero modulation transfer shows that it was completely lost, or not "seen" in the imaging process. Values between 0-1 indicate varying degrees of spatial details preserved.

50% resolution definition: 100nm

9% Rayleigh limit resolution: 38nm

MTF provides a continuum of unique ranking by which to judge a microscope's resolution performance.

Model checking with experiment: PEEM2 Transmission

Aberration correction

Resolution for PEEM3

- -All order ray trace results
- -Diffraction limit included
- -Both resolution and Transmission improved

Aberration range

Tetrode mirror covers the whole range for different operation conditions

PEEM3 layout

- -high stability
- -separator is in vacuum
- -Two CCD

Manipulator

Dodecapole stigmator

Electromagnetic dodecapole deflector

3D engineering modeling of Magnetic separator

Groove/ coil, water cooling through the wire

Electron trajectory

PEEM3 beamline

Zero order tracking for constant energy scale

10⁻⁴, **stability** <**0.165mev**

PEEM2 - PEEM3 comparison

PEEM2

PEEM3

Optics Electrostatic lens Electrostatic lens

Electrostatic mirror

Magnetic separator

Diagnostic last image movable pinhole,

alignment PEEM

corrector Octopole Electromagnetic

dodacapole

Resolution 20nm 5nm

Transmission 5% >90%

@50nm

Beamline Bending 7.3.1.1 EPU 11.0.2

Relative 1 >1000

Flux density

Sample

X-rays
Objective
Lens

Transfer
Lens

Schematic of PEEM2

